Rotavirus Rearranged Genomic RNA Segments Are Preferentially Packaged into Viruses Despite Not Conferring Selective Growth Advantage to Viruses
نویسندگان
چکیده
The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 10(7) wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny.
منابع مشابه
Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses.
Group A rotaviruses (RV), members of the Reoviridae family, are a major cause of infantile acute gastroenteritis. The RV genome consists of 11 double-stranded RNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. We report here a reverse genetics system for RV based on the preferential...
متن کاملPreferential Assortment of Rearranged NSP3 Gene in the Genetic Background of Simian Rotavirus SA11
Selective assortment of rotavirus NSP3 gene in the genetic background of simian rotavirus strain SA11 was analyzed by using single-NSP3 gene-substitution reassortants having NSP3 gene from human rotavirus strain KU (KU-R) or porcine rotavirus strain OSU (OSU-R) in the SA11 background, and an SA11-derived variant Ga613 having a rearranged SA11NSP3 gene which is 937 nucleotides longer than the or...
متن کاملA functional sequence-specific interaction between influenza A virus genomic RNA segments.
Influenza A viruses cause annual influenza epidemics and occasional severe pandemics. Their genome is segmented into eight fragments, which offers evolutionary advantages but complicates genomic packaging. The existence of a selective packaging mechanism, in which one copy of each viral RNA is specifically packaged into each virion, is suspected, but its molecular details remain unknown. Here, ...
متن کاملFunctional analysis of the murine coronavirus genomic RNA packaging signal.
Coronaviruses selectively package genomic RNA into assembled virions, despite the great molar excess of subgenomic RNA species that is present in infected cells. The genomic packaging signal (PS) for the coronavirus mouse hepatitis virus (MHV) was originally identified as an element that conferred packaging capability to defective interfering RNAs. The MHV PS is an RNA structure that maps to th...
متن کاملRearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random.
Group A rotaviruses are the main cause of viral gastroenteritis in infants. The viral genome consists of 11 double-stranded RNA (dsRNA) segments. Dysfunction of the viral RNA polymerase can lead to gene rearrangements, which most often consist of partial sequence duplication of a dsRNA segment. Gene rearrangements have been detected in vivo during chronic infection in immunodeficient children o...
متن کامل